5,214 research outputs found

    A Pragmatic Approach to Exploiting Full Force Capacity for Serial Redundant Manipulators

    Get PDF
    Considering a set of robotic tasks which involve physical interaction with the environment, the theoretical knowledge of the full force capacity of the manipulator is a key factor in the design or development of an efficient and economically attractive solution. Carrying its own weight while countering forces may be too much for a robot in certain configurations. Kinematic redundancy with regard to a task allows a robot to perform it in a continuous space of articular configurations; space in which the payload of the robot may vary dramatically. It may be impossible to withstand a physical interaction in some configurations, while it may be easily sustainable in others that bring the end-effector to the same location. This becomes obviously more prevalent for a limited payload robot. This letter describes a framework for these kind of operations, in which kinematic redundancy is used to explore the full extent of a force capacity for a givenmanipulator and task (in this letter, the terms “force” and “wrench” may interchangeably refer to two-, three-, or six-dimensional forces depending on the dimension of the problem and on whether they may or may not include components of translational forces and/or moments. Their dimensional definition will be explicitly given whenever specifically needed). A pragmatic force capacity index (FCI) is proposed. The FCI offers a sound basis for redundancy resolution via optimization or complete redundancy exploration, and may provide good hints for end-effector design. A practical use case involving 7-DOFs KUKA LBR iiwa was used to demonstrate the relevance of the proposed method

    Task-oriented rigidity optimization for 7 DOF redundant manipulators

    Get PDF
    In this work, redundancy resolution has been employed to increase the Cartesian mechanical rigidity of 7 DOF robot manipulators during tasks requiring stiff interactions with the environment (e.g. milling or drilling). The Cartesian static stiffness of the end-effector for a given joint configuration is deduced from an identified joints stiffness model. The Cartesian reflected rigidity evolution over an analytically computed self-motion of the manipulator shows significant variations that clearly highlight the need to select the right set of joint angles among the possible ones. A global optimization scheme of the redundant DOF is proposed to determine the stiffest robot configurations for a given pose of the end-effector. An experimental study on 7 DOF KUKA LBR iiwa then shows the relevance of the proposed approach in finding the redundant robot joint angles that optimize this rigidity criteria

    Eoulsan : analyse du sÊquençage à haut dÊbit dans le cloud et sur la grille

    No full text
    Eoulsan : analyse du sÊquençage à haut dÊbit dans le cloud et sur la grill

    Reduced frequency of cytotoxic CD56dim CD16+ NK cells leads to impaired antibody-dependent degranulation in EBV-positive classical Hodgkin lymphoma

    Full text link
    Around 30–50% of classical Hodgkin lymphoma (cHL) cases in immunocompetent individuals from industrialized countries are associated with the B-lymphotropic Epstein-Barr virus (EBV). Although natural killer (NK) cells exhibit anti-viral and anti-tumoral functions, virtually nothing is known about quantitative and qualitative differences in NK cells in patients with EBV+ cHL vs. EBV- cHL. Here, we prospectively investigated 36 cHL patients without known immune suppression or overt immunodeficiency at diagnosis. All 10 EBV+ cHL patients and 25 out 26 EBV- cHL were seropositive for EBV antibodies, and EBV+ cHL patients presented with higher plasma EBV DNA levels compared to EBV- cHL patients. We show that the CD56dim CD16+ NK cell subset was decreased in frequency in EBV+ cHL patients compared to EBV- cHL patients. This quantitative deficiency translates into an impaired CD56dim NK cell mediated degranulation toward rituximab-coated HLA class 1 negative lymphoblastoid cells in EBV+ compared to EBV- cHL patients. We finally observed a trend to a decrease in the rituximab-associated degranulation and ADCC of in vitro expanded NK cells of EBV+ cHL compared to healthy controls. Our findings may impact on the design of adjunctive treatment targeting antibody-dependent cellular cytotoxicity in EBV+ cHL

    The reduction of 4-nitrobenzene diazonium electrografted layer: An electrochemical study coupled to in situ sum-frequency generation spectroscopy

    Get PDF
    This work describes an electrochemical study of 4-nitrobenzene diazonium (4-NBD) reduction onto glassy carbon (GC) electrode coupled to in situ sum-frequency generation (SFG) spectroscopy. After 4-NBD grafting at 0.3 V vs. saturated calomel electrode (SCE) onto GC, SFG allowed a clear signal assigned to the symmetrical vibration mode of the nitro (NO2) groups to be observed at 1349 cm-1 or 1353 cm-1 depending on whether the spectrum was recorded in air or inside the solution. This result proved that 4-NBD grafting actually occurs at a potential as high as 0.3 V vs. SCE. The combination of SFG data and cyclic voltammetry (CV) also indicated that at such a potential, NO2 groups did not experience reduction process into hydroxylamine (NHOH) or amine (NH2) groups. The electrolysis of grafted NO2 moieties at -0.1 V was followed by CV and in situ by SFG. The exponential decay of the NO2 signal located at 1353 cm-1 vs. electrolysis time was in accordance with a charge transfer-limited reaction rate for a species immobilized at the electrode surface, and allowed a first order kinetic rate constant for NO2 reduction to be estimated k = 0.006 s-1. The integration of the peaks observed on the corresponding cyclic voltammograms (CVs) which were attributed to the NO/NHOH reversible system showed that the NO2 reduction produced both hydroxylamine and amine groups and was not quantitative. The fact that SFG spectroscopy was silent for long electrolysis time values suggested the remaining nitro groups to be located far from the electrode surface, as a consequence of an electron tunneling efficiency which decreased throughout the film thickness. Further electrolysis at -0.8 V allowed the remaining nitro groups to be reduced into NH2 with almost quantitative yields. All these results suggest the existence of a stratified layer during the electrolysis process, in which there is no limitation due to H+ diffusion in the organic film

    Endocrine remodelling of the adult intestine sustains reproduction in Drosophila.

    Get PDF
    The production of offspring is energetically costly and relies on incompletely understood mechanisms that generate a positive energy balance. In mothers of many species, changes in key energy-associated internal organs are common yet poorly characterised functionally and mechanistically. In this study, we show that, in adult Drosophila females, the midgut is dramatically remodelled to enhance reproductive output. In contrast to extant models, organ remodelling does not occur in response to increased nutrient intake and/or offspring demands, but rather precedes them. With spatially and temporally directed manipulations, we identify juvenile hormone (JH) as an anticipatory endocrine signal released after mating. Acting through intestinal bHLH-PAS domain proteins Methoprene-tolerant (Met) and Germ cell-expressed (Gce), JH signals directly to intestinal progenitors to yield a larger organ, and adjusts gene expression and sterol regulatory element-binding protein (SREBP) activity in enterocytes to support increased lipid metabolism. Our findings identify a metabolically significant paradigm of adult somatic organ remodelling linking hormonal signals, epithelial plasticity, and reproductive output. DOI: http://dx.doi.org/10.7554/eLife.06930.00

    SSTR2 in Nasopharyngeal Carcinoma:Relationship with Latent EBV Infection and Potential as a Therapeutic Target

    Get PDF
    SIMPLE SUMMARY: Nasopharyngeal cancer (NPC) is a malignant epithelial tumor endemic to parts of Asia and associated with infection by the Epstein–Barr virus (EBV) in these regions. The cancer is often detected at a late stage which is associated with poor outcomes (63% 5-year survival). Advances for the management of this disease have remained largely stagnant and treatment relies primarily on radiotherapy and chemotherapy, as well as surgery when indicated. Nevertheless, our understanding of its underlying biology has grown rapidly in the past two decades, laying the foundation for the development of improved therapeutics which have the potential to improve outcomes. This review offers a comprehensive, up-to-date summary of this disease, with a focus on the role of somatostatin receptor 2 (SSTR2) in NPC and how this increased knowledge may lead to improved diagnosis and management of this disease. ABSTRACT: Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor, most commonly located in the pharyngeal recess and endemic to parts of Asia. It is often detected at a late stage which is associated with poor prognosis (5-year survival rate of 63%). Treatment for this malignancy relies predominantly on radiotherapy and/or systemic chemotherapy, which can be associated with significant morbidity and impaired quality of life. In endemic regions NPC is associated with infection by Epstein–Barr virus (EBV) which was shown to upregulate the somatostatin receptor 2 (SSTR2) cell surface receptor. With recent advances in molecular techniques allowing for an improved understanding of the molecular aetiology of this disease and its relation to SSTR2 expression, we provide a comprehensive and up-to-date overview of this disease and highlight the emergence of SSTR2 as a key tumor biomarker and promising target for imaging and therapy

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore